Finite quantum geometry, octonions and the theory of fundamental particles

Michel DUBOIS-VIOLETTE

Laboratoire de Physique des 2 Infinis Irène Joliot Curie
Pôle Théorie, IJCLab UMR 9012
CNRS, Université Paris-Saclay - Bâtiment 210
F-91406 Orsay Cedex
(amichel.dubois-violette@universite-paris-saclay.fr
Octonions and the Standard Model
Perimeter Institute for Theoretical Physics
February 8, 2021 to May 17, 2021
slides updated on May 30, 2021

General framework

- External geometry: Lorentzian spacetime M $\mathcal{C}(M)$ with Poincaré group action and equivariant $\mathcal{C}(M)$-modules.
- Internal geometry: Finite quantum geometry $J=$ finite-dimensional algebra of quantum observables with some further structure $\Rightarrow G \subset \operatorname{Aut}(J)$ and equivariant J-modules.
- $\Rightarrow \mathcal{J}=\mathcal{C}(M, J), \mathcal{J}$-modules and connections
\Rightarrow gauge interactions, etc.
\mathcal{J} defines an "almost classical quantum geometry".
The theory of universal unital multiplicative envelope $U_{1}(J)$ of J makes the bridge between the present approach and the noncommutative one which is summarized in [6] and [7].

Internal space for a quark [1]

$E \simeq \mathbb{C}^{3}$ with (color) $S U(3)$ action
$\{S U(3) \subset U(3) \Rightarrow E$ is Hilbert with scalar product $\langle\bullet, \bullet\rangle$
Unimodularity of $S U(3) \Rightarrow$ volume $=3$-linear form on $E, v o l(\bullet, \bullet, \bullet)$
\Rightarrow antilinear antisymmetric product x on E

$$
\operatorname{vol}\left(Z_{1}, Z_{2}, Z_{3}\right)=\left\langle Z_{1} \times Z_{2}, Z_{3}\right\rangle
$$

SU(3)-basis $=$ Orthonormal basis $\left(e_{k}\right)$ of E such that

$$
v\left(e_{1}, e_{2}, e_{3}\right)=1
$$

By chosing an origin $S U(3)$-basis $\leftrightarrow S U(3)$
2 products $x: E \times E \rightarrow E$ and $\langle\rangle:, E \times E \rightarrow \mathbb{C}$

Unital SU(3)-algebra

$S U(3)=\{U \in G L(E) \mid x$ and \langle,$\rangle are preserved \}$
$\left\|Z_{1} \times Z_{2}\right\|^{2}=\left\|Z_{1}\right\|^{2}\left\|Z_{2}\right\|^{2}-\left|\left\langle Z_{1}, Z_{2}\right\rangle\right|^{2}$
add a unit $\Rightarrow \mathbb{C} \oplus E \quad \mathbb{1}=(1,0)$
$(1,0)(0, Z)=(0, Z)=(0, Z)(1,0),\left(z_{1}, 0\right)\left(z_{2}, 0\right)=\left(z_{1} z_{2}, 0\right)$
$\left(0, Z_{1}\right)\left(0, Z_{2}\right)=\left(\alpha\left\langle Z_{1}, Z_{2}\right\rangle, \beta Z_{1} \times Z_{2}\right),|\alpha|=|\beta|=1$
$\Rightarrow\left\|\left(0, Z_{1}\right)\right\|^{2}\left\|\left(0, Z_{2}\right)\right\|^{2}=\left\|\left(0, Z_{1}\right)\left(0, Z_{2}\right)\right\|^{2}$
natural to require $\left\|\left(z_{1}, Z_{1}\right)\left(z_{2}, Z_{2}\right)\right\|=\left\|\left(z_{1}, Z_{1}\right)\right\|\left\|\left(z_{2}, Z_{2}\right)\right\|$ solution :

$$
\begin{aligned}
& \left(z_{1}, Z_{1}\right)\left(z_{2}, Z_{2}\right)=\left(z_{1} z_{2}-\left\langle Z_{1}, Z_{2}\right\rangle, \bar{z}_{1} Z_{2}+z_{2} Z_{1}+i Z_{1} \times Z_{2}\right) \\
& \Rightarrow(\bar{z},-Z)(z, Z)=(z, Z)(\bar{z},-Z)=\|(z, Z)\|^{2} \mathbb{1}
\end{aligned}
$$

An interpretation of the quark-lepton symmetry

$S U(3)$ is the group of complex-linear automorphisms of $\mathbb{C} \oplus E$ which preserves the above product and E carries the fundamental representation of $S U(3)$ while \mathbb{C} corresponds to the trivial one.
$\Rightarrow E$ being the internal space of a quark, it is "natural" to consider \mathbb{C} as the internal space of the corresponding lepton.

As a real algebra $\mathbb{C} \oplus E$ is 8-dimensional isomorphic to the octonion algebra $\mathbb{(0}$.
$S U(3) \subset G_{2}=\operatorname{Aut}(\mathbb{O})$ is the subgroup preserving i, a given imaginary element of \mathbb{O} with $i^{2}=-1$.

The 3 generations

6 flavors of quark-lepton
$\left(u, \nu_{e}\right),(d, e),\left(c, \nu_{\mu}\right),(s, \mu),\left(t, \nu_{\tau}\right),(b, \tau)$ grouped in 3 generations, columns of

generations			
quarks $Q=2 / 3$	u	c	t
leptons $Q=0$	ν_{e}	ν_{μ}	ν_{τ}
quarks $Q=-1 / 3$	d	s	b
leptons $Q=-1$	e	μ	τ

This sort of "triality" combined with the above interpretation of the quark-lepton symmetry suggest to add over each space-time point the finite quantum system corresponding to the exceptional Jordan algebra.

Quantum geometry - I

J (real vector space) quantum analog of a space of real functions. Squaring $x \mapsto x^{2}$ for $x \in J$ such that $x . y=\frac{1}{2}\left((x+y)^{2}-x^{2}-y^{2}\right)$ is bilinear.
J is power associative if by defining $x^{n+1}=x \cdot x^{n}$
(i) $x^{r} \cdot x^{s}=x^{r+s}$
J is formally real if one has
(ii) $\sum_{k \in I}\left(x_{k}\right)^{2}=0 \Rightarrow x_{k}=0, \quad \forall k \in I$

Theorem (1)
A finite-dimensional commutative real algebra J which is power associative and formally real is a Jordan algebra, that is one has

$$
x^{2} \cdot(y \cdot x)=\left(x^{2} \cdot y\right) \cdot x, \quad \forall x, y \in J
$$

Such a Jordan algebra is also called an Euclidean Jordan algebra.

Quantum geometry - II

Condition (i) and (ii) are necessary for spectral theory (with real spectra).

There are various infinite-dimensional extensions of the above theorem \Rightarrow various formulations of "quantum geometry", etc.

In most cases the Jordan algebras which describe quantum geometries are hermitian (real) subspaces of complex $*$-algebras invariant by the anticommutator $x . y=\frac{1}{2}(x y+x y)$.
\Rightarrow In these cases one can use the noncommutative geometric setting.

Properties of finite-dimensional Euclidean Jordan algebras

Let J be a finite-dimensional Euclidean Jordan algebra.
Then J has a unit $\mathbb{1} \in J$ and $\forall x \in J$

$$
x=\sum_{r \in I_{x}} \lambda_{r} e_{r}, \quad e_{r} e_{s}=\delta_{r s} e_{r} \in J, \quad \lambda_{r} \in \mathbb{R}
$$

with $\mathbb{1}=\sum_{r \in I_{x}} e_{r}, \operatorname{card}(I x) \leq n(J) \in \mathbb{N}$
\Rightarrow functional calculus with $\mathbb{R}[X]$.
Furthermore J is a direct sum of a finite number of simple ideals.

Finite-dimensional simple Euclidean Jordan algebras

Theorem (2)

A finite-dimensional simple Euclidean Jordan algebra is isomorphic to one of

$$
\begin{array}{ll}
c=1 & \mathbb{R} \\
c=2 & J_{2}^{n}=J \operatorname{Spin}_{n+1}=\mathbb{R} \mathbb{1}+\mathbb{R}^{n+1}, \gamma^{\mu} \cdot \gamma^{\nu}=\delta^{\mu \nu} \mathbb{1}, n \geq 1 \\
c=3 & J_{3}^{1}=H_{3}(\mathbb{R}), J_{3}^{2}=H_{3}(\mathbb{C}), J_{3}^{4}=H_{3}(\mathbb{H}), J_{3}^{8}=H_{3}(\mathbb{O}) \\
c=n \geq 4 & J_{n}^{1}=H_{n}(\mathbb{R}), J_{n}^{2}=H_{n}(\mathbb{C}), J_{n}^{4}=H_{n}(\mathbb{H})
\end{array}
$$

These correspond to the "finite quantum spaces" (i.e. "real function's spaces" over the "quantum spaces").

The "octonionic factors" J_{2}^{8} and $J_{3}^{8}[1]$, [4]

The above interpretation which connects the quark-lepton symmetry and the unimodularity of the color group points the attention to the factors

$$
\begin{gathered}
J_{2}^{8}=H_{2}(\mathbb{O})=J \text { Spin }_{9} \\
J_{3}^{8}=H_{3}(\mathbb{O})
\end{gathered}
$$

together with the subgroups of $\operatorname{Aut}\left(J_{2}^{8}\right)=O(9)$ and of Aut $\left(J_{3}^{8}\right)=F_{4}$ which preserve the splitting $\mathbb{O}=\mathbb{C} \oplus \mathbb{C}^{3}$ (and act \mathbb{C}-linearly on \mathbb{C}^{3}).
Remark: It is worth noticing here that there is another octonionic factor namely $J_{2}^{7}=J$ Spin $_{8}$ identified to the Jordan subalgebra of J_{2}^{8} which consists of the 2×2 octonionic hermitian matrices with diagonals multiple of $\mathbb{1}$ (i.e. $\left(\begin{array}{ll}\lambda & x \\ \bar{x} & \lambda\end{array}\right)$ with $\lambda \in \mathbb{R}, x \in \mathbb{O}$).

Action of $G_{S M}=S U(3) \times S U(2) \times U(1) / \mathbb{Z}_{6}$ on J_{2}^{8}

$O(9)=\operatorname{Aut}\left(J_{2}^{8}\right)$, the subgroup which preserves the splitting
$\mathbb{O}=\mathbb{C} \oplus \mathbb{C}^{3}$ is the group $O(3) \otimes U(3)$. To express this action write

$$
\left(\begin{array}{cc}
\zeta_{1} & x \\
\bar{x} & \zeta_{2}
\end{array}\right) \in J_{2}^{8}
$$

as

$$
\left(\begin{array}{ll}
\zeta_{1} & x \\
\bar{x} & \zeta_{2}
\end{array}\right)=\left(\begin{array}{cc}
\zeta_{1} & z \\
\bar{z} & \zeta_{2}
\end{array}\right)+Z \in J_{2}^{2} \oplus \mathbb{C}^{3}
$$

where $x=z+Z \in \mathbb{C} \oplus \mathbb{C}^{3}$ represents $x \in \mathbb{O}$. The action of $O(3) \otimes U(3)$ is then the action of $O(3)=\operatorname{Aut}\left(J_{2}^{2}\right)$ and the action of $U(3)$ on \mathbb{C}^{3}. The action of the connected part $S O(3) \times U(3)$ is in fact an action of $G_{S M} / \mathbb{Z}_{2}=S O(3) \times U(3)$, i.e. of $G_{S M}$ by forgetting the torsion part of the fundamental group.

Action of $S U(3) \times S U(3) / \mathbb{Z}_{3}$ on J_{3}^{8}

$F_{4}=\operatorname{Aut}\left(J_{3}^{8}\right)$, the subgroup which preserves the representations of the octonions occurring in the matrix elements of J_{3}^{8} as elements of $\mathbb{C} \oplus \mathbb{C}^{3}$ is $S U(3) \times S U(3) / \mathbb{Z}_{3}$. To express this action write

$$
\left(\begin{array}{lll}
\zeta_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \zeta_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \zeta_{3}
\end{array}\right) \in J_{3}^{8}
$$

as

$$
\left(\begin{array}{lll}
\zeta_{1} & z_{3} & \bar{z}_{2} \\
\bar{z}_{3} & \zeta_{2} & z_{1} \\
z_{2} & \bar{z}_{1} & \zeta_{3}
\end{array}\right)+\left(Z_{1}, Z_{2}, Z_{3}\right) \in J_{3}^{2} \oplus M_{3}(\mathbb{C})
$$

where $x_{i}=z_{i}+Z_{i} \in \mathbb{C} \oplus \mathbb{C}^{3}$ is the representation of $x_{i} \in \mathbb{O}$.
The action of $(U, V) \in S U(3) \times S U(3)$ is then $H \mapsto V H V^{*}, M \mapsto U M V^{*}$ on $H \oplus M \in J_{3}^{2} \oplus M_{3}(\mathbb{C})$.

The action of U is the previous action of the color $S U(3)$.

The \mathbb{Z}_{3}-splitting principle

Yokota suggests a simpler formulation (Arxiv: 0909.0431),
$i \in \mathbb{C}$ corresponds to $i \in \mathbb{O} \Rightarrow \mathbb{Z}_{3} \subset S U(3) \subset G_{2}=\operatorname{Aut}(\mathbb{O})$. The \mathbb{Z}_{3} action on \mathbb{O} is induced by $w \in \operatorname{Aut}(\mathbb{O})$

$$
w(z+Z)=z+\omega_{1} Z, \quad \omega_{1}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i
$$

One has $w^{3}=I$ and this also induces a \mathbb{Z}_{3}-action by automorphism, again denoted w, on J_{2}^{8} (then $w \in S O(9)$) and on J_{3}^{8} (then $w \in F_{4}$). The corresponding subgroups leaving w invariant are given by

$$
\begin{gathered}
\left(G_{2}\right)^{w}=S U(3) \\
(S O(9))^{w}=G_{S M} / \mathbb{Z}_{2} \\
\left(F_{4}\right)^{w}=S U(3) \times S U(3) / \mathbb{Z}_{3}
\end{gathered}
$$

Exceptional quantum factor

$$
J_{3}^{8}=H_{3}(\mathbb{O})=\{3 \times 3 \text { hermitian octonionic matrices }\}
$$

- Albert has shown that it cannot be realized as a part stable for the anticommutator of an associative algebra.
- It follows from the theory of Zelmanov that this is the only exceptional factor.

Center

A arbitrary \mathbb{K}-algebra; the center $Z(A)$ of A is the set of the $z \in A$ such that

$$
[x, z]=0, \forall x \in A
$$

and

$$
[x, y, z]=[x, z, y]=[z, x, y]=0, \forall x, y \in A
$$

where $[x, z]=x z-z x,[x, y, z]=(x y) z-x(y z), \forall x, y, z \in A$.
$Z(A)$ is a commutative associative subalgebra of A.

Lemma (1)

Assume that A is commutative. Then one has:
$z \in Z(A) \Leftrightarrow[x, y, z]=0, \forall x, y \in A$.

Proof.

$[x, z]=0$ is clear ; $[x, y, z]=-[z, y, x]=0$ by commutativity and again by commutativity $[x, y, z]-[y, x, z]=0$ implies $[x, z, y]=0$. $(\equiv[y, z, x] \equiv-[x, z, y])$.

Derivations

A arbitrary \mathbb{K}-algebra; a linear endomorphism δ of A is a derivation of A (into A) if it satisfies

$$
\delta(x y)=\delta(x) y+x \delta(y), \quad \forall x, y \in A
$$

The space $\operatorname{Der}(A)$ of all derivations of A is a $Z(A)$-module

$$
(z \delta)(x)=z \delta(x), \quad \forall z \in Z(A), \forall x \in A
$$

$\operatorname{Der}(A)$ is also a Lie algebra

$$
\left[\delta_{1}, \delta_{2}\right](x)=\delta_{1}\left(\delta_{2}(x)\right)-\delta_{2}\left(\delta_{1}(x)\right), \forall \delta_{1}, \delta_{2} \in \operatorname{Der}(A), \forall x \in A
$$

One has

$$
\delta(Z(A)) \subset Z(A), \quad \forall \delta \in \operatorname{Der}(A)
$$

and

$$
\left[\delta_{1}, z \delta_{2}\right]=z\left[\delta_{1}, \delta_{2}\right]+\delta_{1}(z) \delta_{2}, \quad \forall \delta_{1}, \delta_{2} \in \operatorname{Der}(A), \quad \forall z \in Z(A)
$$

that is $(\operatorname{Der}(A), Z(A))$ is a Lie Rinehart algebra

Categories of algebras

\mathbb{K} a fixed field ; all vector spaces, algebras are over \mathbb{K}
A category of algebras is a category \mathcal{C} such that its objects are algebras and its morphisms are algebra-homomorphisms.
$\mathcal{C}_{\text {Alg }}=$ category of all algebras and all algebra-homomorphisms
$\mathcal{C}_{\text {Alg }_{1}}=$ category of unital algebras and unital algebra-homomorphisms
$\mathcal{C}_{\text {Lie }}=$ category of Lie algebras
$\mathcal{C}_{\text {Jord }}=$ category of Jordan algebras
$\mathcal{C}_{\text {Jord }_{1}}=$ category of unital Jordan algebras
$\mathcal{C}_{A}=$ category of associative algebras
$\mathcal{C}_{A_{1}}=$ category of unital associative algebras
$\mathcal{C}_{A_{Z}}=$ category of all associative algebras but morphisms sending centers into centers.
$\mathcal{C}_{\text {Com }}=$ category of commutative algebras, etc.

Bimodules

\mathcal{C} a category of algebras
$A \in \mathcal{C}$ an object, M a vector space such that there are

$$
A \otimes M \rightarrow M, a \otimes m \mapsto a m \text { and } M \otimes A \rightarrow M, m \otimes a \mapsto m a
$$

define the product $(A \oplus M) \otimes(A \oplus M) \rightarrow A \oplus M$

$$
(a \oplus m) \otimes\left(a^{\prime} \oplus m^{\prime}\right) \mapsto a a^{\prime} \oplus\left(a m^{\prime}+m a^{\prime}\right)
$$

M is an A-bimodule for \mathcal{C} if

1. $A \oplus M \in \mathcal{C}$
2. $A \rightarrow A \oplus M$ is a morphism of \mathcal{C}
3. $A \oplus M \rightarrow A$ is a morphism of \mathcal{C}

Examples: Bimodules for the above categories (exercise !)

Jordan (bi)-modules I

J Jordan algebra, M vector space with

$$
\begin{array}{ll}
J \otimes M \rightarrow M, & x \otimes \Phi \mapsto x \Phi \\
M \otimes J \rightarrow M, & \Phi \otimes x \mapsto \Phi x
\end{array}
$$

such that the null-split extension $J \oplus M$

$$
(x \oplus \Phi)\left(x^{\prime} \oplus \Phi^{\prime}\right)=\left(x x^{\prime} \oplus x \Phi^{\prime}+\Phi x^{\prime}\right)
$$

is again a Jordan algebra then M is a Jordan bimodule

$$
\Leftrightarrow\left\{\begin{array}{l}
\text { (i) } x \Phi=\Phi x \\
\text { (ii) } x\left(x^{2} \Phi\right)=x^{2}(x \Phi) \\
\text { (iii) }\left(x^{2} y\right) \Phi-x^{2}(y \Phi)=2((x y)(x \Phi)-x(y(x \Phi)))
\end{array}\right.
$$

If J has a unit $\mathbb{1} \in J, M$ is unital if
(iiii) $\mathbb{1} \Phi=\Phi$
In view of (i), a Jordan bimodule is simply called a Jordan module.

Jordan (bi)-modules II

J, M being as before, set $L_{x} \Phi=x \Phi$ then (ii) reads

$$
\text { (ii) }{ }^{\prime} \quad\left[L_{x}, L_{x^{2}}\right]=0
$$

while (iii) reads

$$
(\text { iii })^{\prime} \quad L_{x^{2} y}-L_{x^{2}} L_{y}-2 L_{x y} L_{x}+2 L_{x} L_{y} L_{x}=0
$$

which is equivalent to

$$
\begin{cases}(a) & L_{x^{3}}-3 L_{x^{2}} L_{x}+2 L_{x}^{3}=0 \\ (b) & {\left[\left[L_{x}, L_{y}\right], L_{z}\right]+L_{[x, z, y]}=0}\end{cases}
$$

where $[x, z, y]=(x z) y-x(z y)$ is the associator. Condition (iiii) reads

$$
(i v)^{\prime} \quad L_{\mathbb{1}}=\mathbb{1}\left(=I_{M}\right)
$$

Free J-modules and free $Z(J)$-modules I [3]

J a Jordan algebra is canonically a J -module which is unital whenever J has a unit.

Lemma (2)

Let J be a Jordan algebra, E and F be vector spaces and let $\varphi: J \otimes E \rightarrow J \otimes F$ be a J-module homomorphism. Then one has

$$
\varphi(Z(J) \otimes E) \subset Z(J) \otimes F
$$

Proof.

Choose basis $\left(e_{\alpha}\right)$ and $\left(f_{\lambda}\right)$ for E and F. One has $\varphi\left(z \otimes e_{\alpha}\right)=m_{\alpha}^{\lambda} \otimes f_{\lambda}$ for $z \in Z(J)$ and some $m_{\alpha}^{\lambda} \in J$. On the other hand one has $(x y) z=x(y z)$ for any $x, y \in J$
$\Rightarrow \varphi\left((x y) z \otimes e_{\alpha}\right)=(x y) \varphi\left(z \otimes e_{\alpha}\right)=x \varphi\left(y z \otimes e_{\alpha}\right)=x\left(y \varphi\left(z \otimes e_{\alpha}\right)\right)$
$\Leftrightarrow\left[x, y, m_{\alpha}^{\lambda}\right]=0$.

Free J-modules and free $Z(J)$-modules II

Proposition (1)

Let J be a unital Jordan algebra. Then $J \otimes E \mapsto Z(J) \otimes E$ and $(\varphi: J \otimes E \rightarrow J \otimes F) \mapsto(\varphi \upharpoonright Z(J) \otimes E: Z(J) \otimes E \rightarrow Z(J) \otimes F)$ is an isomorphism between the category of free unital J-modules and the category of free unital $Z(J)$-modules.

Indeed from the above lemma $\varphi \upharpoonright(Z(J) \otimes E)$ is a $Z(J)$-module homomorphism of $Z(J) \otimes E$ into $Z(J) \otimes F$.
Conversely any $Z(J)$-module homomorphim $\varphi_{0}: Z(J) \otimes E \rightarrow Z(J) \otimes F$ extends uniquely by setting $x \varphi_{0}(\mathbb{1} \otimes E)=\varphi(x \otimes E) \in J \otimes F$ as a J-module homomorphism.

Unital JSpin-modules I

$E,(\bullet, \bullet)$ pseudo euclidean $\rightarrow 3$ unital \mathbb{R}-algebras generated by E

1. Jordan spin factor $\operatorname{JSpin}(E)=\mathbb{R} \mathbb{1}+E \quad x \circ y=(x, y) \mathbb{1}$
2. Clifford algebra $C \ell(E) x y+y x=2(x, y) \mathbb{1}(=2 x \circ y)$
3. Meson algebra $B(E) x y x=(x, y) x(B(E)$ associative $)$.
$C \ell(E)$ and $B(E)$ are finite-dimensional unital \mathbb{Z}_{2}-graded associative real algebras and $x \mapsto \frac{1}{2}(x \otimes \mathbb{1}+\mathbb{1} \otimes x)$ defines an injective homomorphism $i: B(E) \rightarrow C \ell(E) \otimes C \ell(E)$

Theorem (3)

a - $C \ell(E)$ is the universal unital associative envelope of $J \operatorname{Spin}(E)$
$b-B(E)$ is the universal unital multiplicative envelope of JSpin (E) i.e. M unital left $B(E)$-module $\Leftrightarrow M$ unital JSpin(E)-module.

Proof.

Let M be a unital $J \operatorname{Spin}(E)$-module. Then $L_{x \circ y}=(x, y) \mathbb{1}$ so (ii)' is satisfied in view of (iv)' and (iii)' while (iii)' reduces to $L_{x} L_{y} L_{x}=(x, y) L x$ which means that M is a unital left $B(E)$-module.

Unital JSpin-modules II

$O(E)=\operatorname{Aut}(J \operatorname{Spin}(E))=\operatorname{Aut}(C \ell(E))=\operatorname{Aut}(B(E))$,
$\mathfrak{s o}(E)=\operatorname{Der}(J \operatorname{Spin}(E))=\operatorname{Der}(C \ell(E))=\operatorname{Der}(B(E))$
moreover the corresponding derivations are inner derivations in the above corresponding algebras \Rightarrow they act on the modules for these algebras.
$J \operatorname{Spin}(E)$ is an euclidean Jordan algebra iff. E is euclidean, in this case, one identifiess E with $\mathbb{R}^{n}(n=\operatorname{dim}(E))$ endowed with the scalar product for which the canonical basis is orthonormal and use the notations $J \operatorname{Spin}(E)=J \operatorname{Spin}_{n}, C \ell(E)=C \ell_{n}, B(E)=B_{n}$,
$O(E)=O_{n}$ and $\mathfrak{s o}(E)=\mathfrak{s o}_{n}$.
B_{n} is the direct sum of a finite family of matrix algebras.

Clifford algebras as JSpin-modules

$C \ell_{n+1}$ is a unital module over $J_{2}^{n}=J S \operatorname{Sin}_{n+1}$ via

$$
L_{\gamma}(A)=\frac{1}{2}(\gamma A+A \gamma)
$$

Canonical isomorphism of \mathbb{Z}_{2}-graded vector space (PBW)

$$
\begin{aligned}
& \Gamma: \wedge \mathbb{R}^{n+1} \rightarrow C \ell_{n+1}, \omega_{i_{1}} \ldots i_{p} \mapsto \Gamma(\omega)=\omega_{i_{1}} \ldots i_{p} \gamma^{i_{1}} \ldots \gamma^{i_{p}} \\
& \Rightarrow C \ell_{n+1}=\oplus_{p=0}^{n+1} \Gamma^{p} \text { with } \Gamma^{p}=\Gamma\left(\wedge^{p} \mathbb{R}^{n+1}\right)
\end{aligned}
$$

Proposition (2)

For any integer $p \leq \frac{1}{2} n, \Gamma^{2 p} \oplus \Gamma^{2 p+1}$ is an irreducible J_{2}^{n}-submodule of $C \ell_{n+1}$ and if $n+1=2 m$ then $\Gamma^{2 m} \simeq \mathbb{R}$ is also an irreducible submodule of $C \ell_{n+1}=C \ell_{2 m}$.

The decomposition of $C \ell_{n+1}$ into irreducible J_{2}^{n}-modules follows.

The case of $J_{2}^{4 k}=J \operatorname{Spin}_{4 k+1}$ for $k \geq 1$

$\hat{\varepsilon}=\gamma_{0} \gamma_{1} \ldots \gamma_{4 k} \in C l_{4 k+1}$ is central with $(\hat{\varepsilon})^{2}=\mathbb{1}$
$\Rightarrow C \ell_{4 k+1}=C \ell_{4 k}^{+} \oplus C \ell_{4 k}^{-}, C \ell_{4 k}^{\varepsilon} \simeq C \ell_{4 k}$.
Setting $\gamma_{0}^{\varepsilon}=\varepsilon \gamma_{1}^{\varepsilon} \ldots \gamma_{4 k}^{\varepsilon} \in C \ell_{4 k}^{\varepsilon}$ and
$L_{\gamma_{m}}\left(\omega^{\varepsilon}\right)=\frac{1}{2}\left(\gamma_{m}^{\varepsilon} \omega^{\varepsilon}+\omega^{\varepsilon} \gamma_{m}^{\varepsilon}\right), \forall \omega^{\varepsilon} \in C \ell_{4 k}^{\varepsilon}, m \in\{0,1, \ldots, 4 k\}$
$\Rightarrow C \ell_{4 k}^{\varepsilon} \in\left\{J_{2}^{4 k}\right.$-modules $\} \Rightarrow a J_{2}^{4 k}$-module structure on
$C \ell_{4 k+1}$ which is different of the one induced by the J_{2}^{n}-module structure of $C \ell_{n+1}$ defined previously $\forall n$.

J_{3}^{8}-modules

Any Jordan algebra J is canonically a J-module which is unital whenever J has a unit.

The list of the unital irreducible Jordan modules over the finite-dimensional Euclidean Jordan algebras is given in [Jacobson]. In the case of the exceptional algebra one has the following proposition

Proposition (3)

Any unital irreducible J_{3}^{8}-module is isomorphic to J_{3}^{8} (as module).
In particular, any finite unital module over J_{3}^{8} is of the form $J_{3}^{8} \otimes E$ for some finite-dimensional real vector space E. Thus the complexified $J_{3}^{8} \otimes \mathbb{C}$ of J_{3}^{8} is a free J_{3}^{8}-module.

J_{3}^{8}-modules for 2 families by generation [1]

$$
\begin{aligned}
J^{u} & =\left(\begin{array}{ccc}
\alpha_{1} & \nu_{\tau}+t & \bar{\nu}_{\mu}-c \\
\bar{\nu}_{\tau}-t & \alpha_{2} & \nu_{e}+u \\
\nu_{\mu}+c & \bar{\nu}_{e}-u & \alpha_{3}
\end{array}\right) \\
J^{d} & =\left(\begin{array}{ccc}
\beta_{1} & \tau+b & \bar{\mu}-s \\
\bar{\tau}-b & \beta_{2} & e+d \\
\mu+s & \bar{e}-d & \beta_{3}
\end{array}\right)
\end{aligned}
$$

or with the previous representation

$$
\begin{aligned}
J^{u} & =\left(\begin{array}{lll}
\alpha_{1} & \nu_{\tau} & \bar{\nu}_{\mu} \\
\bar{\nu}_{\tau} & \alpha_{2} & \nu_{e} \\
\nu_{\mu} & \bar{\nu}_{e} & \alpha_{3}
\end{array}\right)+(u, c, t) \\
J^{d} & =\left(\begin{array}{ccc}
\beta_{1} & \tau & \bar{\mu} \\
\bar{\tau} & \beta_{2} & e \\
\mu & \bar{e} & \beta_{3}
\end{array}\right)+(d, s, b)
\end{aligned}
$$

α_{i}, β_{j} new Majorana particles \Rightarrow OK for the cancellation of anomalies !

Quaternions and the $U(1) \times S U(2)$-symmetry

$$
q=\left(z_{1}, z_{2}\right)=z_{1}+z_{2} j \in \mathbb{H}
$$

The subgroup of $\operatorname{Aut}(\mathbb{H})$ which preserves i is $U(1)$

$$
\begin{gathered}
z_{1}+z_{2} j \mapsto z_{1}+e^{i \theta} z_{2} j \\
\left(\begin{array}{cc}
\xi_{1} & q \\
\bar{q} & \xi_{2}
\end{array}\right)=\left(\begin{array}{ll}
\xi_{1} & z_{1} \\
\bar{z}_{1} & \xi_{2}
\end{array}\right)+z_{2}\left(\begin{array}{cc}
0 & j \\
-j & 0
\end{array}\right) \in J_{2}^{4}
\end{gathered}
$$

Subgroup of Aut $\left(J_{2}^{4}\right)$ which preserves $\cdots=U(1) \times S U(2)$
$\left(\begin{array}{ll}\xi_{1} & z_{1} \\ \bar{z}_{1} & \xi_{2}\end{array}\right)+z_{2}\left(\begin{array}{cc}0 & j \\ -j & 0\end{array}\right) \mapsto U\left(\begin{array}{ll}\xi_{1} & z_{1} \\ \bar{z}_{1} & \xi_{2}\end{array}\right) U^{*}+e^{i \theta} z_{2}\left(\begin{array}{cc}0 & j \\ -j & 0\end{array}\right)$
as for $U \in S U(2)$

$$
U\left(\begin{array}{cc}
0 & j \\
-j & 0
\end{array}\right) U^{*}=\left(\begin{array}{cc}
0 & j \\
-j & 0
\end{array}\right)
$$

Triality in J_{3}^{8} and the 3 generations [4]

Two ways to describe the underlying triality of J_{3}^{8} :
W1 - this triality corresponds to the 3 octonions of the matrix of an element of J_{3}^{8},

W2 - this triality corresponds to the 3 canonical subalgebras of hermitian 2×2 matrices of J_{3}^{8} corresponding themselves to the 3 octonions of W1.

W1 and W2 are equivalent but lead naturally to 2 conceptually different interpretations. In fact $J_{2}^{8}=J$ Sping $_{9}$ corresponds to a complete generation.

$J_{2}^{8}=J S_{\text {pin }}^{9}$ for one generation

1. $\operatorname{Aut}\left(J_{2}^{8}\right)=O(9)$
$G_{S M} / \mathbb{Z}_{2}=S O(3) \times U(3)$ is (\simeq) the subgroup of $S O(9)$ which preserves the splitting $\mathbb{C} \oplus \mathbb{C}^{3}$ of \mathbb{O} and acts \mathbb{C}-linearly on \mathbb{C}^{3}.
2. The $*$-algebra $C \ell_{9}^{c}=M_{16}(\mathbb{C}) \oplus M_{16}(\mathbb{C})$ is generated by the relations

$$
\begin{cases}\frac{1}{2}(x y+y x)=x \circ y, & \forall x, y \in J_{2}^{8} \\ x^{*}=x, & \forall x \in J_{2}^{8} \\ \mathbb{1}=\mathbb{1}_{\frac{J}{2}}^{8} & \end{cases}
$$

3. J_{2}^{8} is a unital Jordan subalgebra of the hermitian part $H\left(C \ell_{9}^{c}\right)=J_{16}^{2} \oplus J_{16}^{2}$ of $C \ell_{9}^{c}$ which is therefore a J_{2}^{8}-module. Note that the diagonal $\Delta H\left(C \ell_{9}^{c}\right)$ of $H\left(C \ell_{9}^{c}\right)$ is a maximal subspace of compatible observables in $H\left(\mathrm{Cl}_{9}^{c}\right)$ is of dimension $32=2^{5}$. This property is common to $\mathrm{H}\left(\mathrm{Cl}_{9}\right)$ $H\left(C \ell_{10}\right)$ and $H\left(C \ell_{10}^{c}\right)$, i.e. $\operatorname{dim}\left(\Delta H\left(C \ell_{9}\right)\right)=\operatorname{dim}\left(\Delta H\left(C \ell_{10}\right)\right)=\operatorname{dim}\left(\Delta H\left(C \ell_{10}^{c}\right)\right)=2^{5}$.

The correspondence "triality-generation" in J_{3}^{8} [4]

$P^{2}=P$, primitive $=$ pure state of J_{3}^{8}
$\leftrightarrow J_{2}^{8}(P)=(\mathbb{1}-P) J_{3}^{8}(\mathbb{1}-P) \simeq J$ Spin $_{9}$
$\operatorname{Aut}\left(J_{2}^{8}(P)\right)=$ subgroup of F_{4} which preserves $P \simeq$ Spin $_{9}$
P_{i} diagonal $\leftrightarrow J_{2}^{8}\left(P_{i}\right) \leftrightarrow$ generation $i \quad(i \in\{1,2,3\})$

$$
\operatorname{Aut}\left(J_{2}^{8}\left(P_{i}\right)\right) \cap \frac{S U(3)_{c} \times S U(3)}{\mathbb{Z}_{3}}=G_{i} \simeq \frac{S U(3)_{c} \times S U(2) \times U(1)}{\mathbb{Z}_{6}}
$$

Each $J_{2}^{8}\left(P_{i}\right)$ with the identification $\mathbb{O}=\mathbb{C} \oplus \mathbb{C}^{3}$ has automorphism group $G_{i} \subset F_{4}$ isomorphic to the standard model group for one generation

The extended electroweak symmetry $S U(3)_{\text {ew }}$

$$
\begin{gathered}
J_{i}=J_{2}^{8}\left(P_{i}\right), \quad \operatorname{Aut}\left(J_{i}\right) \simeq \text { Sping }_{9} \\
\operatorname{SU}(3)_{c} \times \operatorname{SU}(3) / \mathbb{Z}_{3} \subset F_{4}=\operatorname{Aut}\left(J_{3}^{8}\right) \\
\operatorname{Aut}\left(J_{i}\right) \subset F_{4} \\
S U(3)_{c} \times \operatorname{SU}(3) / \mathbb{Z}_{3} \cap \operatorname{Aut}\left(J_{i}\right)=G_{i} \\
G_{i} \simeq \operatorname{SU}(3)_{c} \times \operatorname{SU}(2) \times U(1) / \mathbb{Z}_{6}
\end{gathered}
$$

\Rightarrow The second $S U(3)$ project onto the electroweak symmetry for each generation.
This $S U(3)$ will be called extented electroweak symmetry and denoted by $S U(3)_{e w}$. Internal symmetry $S U(3)_{c} \times S U(3)_{e w} / \mathbb{Z}_{3} \subset F_{4}$

Differential graded Jordan algebras [1]

$\Omega=\oplus_{n \in \mathbb{N}} \Omega^{n}$ which is a Jordan superalgebra (for $\mathbb{N} / 2 \mathbb{N}$)

$$
a b=(-1)^{|a \|||b|} b a \text { for } a \in \Omega^{|a|}, b \in \Omega^{|b|}
$$

and graded Jordan identity
$(-1)^{|a||c|}\left[L_{a b}, L_{c}\right] g r+(-1)^{|b||a|}\left[L_{b c}, L_{a}\right] g r+(-1)^{|c||b|}\left[L_{c a}, L_{b}\right] g r=0$
with a differential d

$$
\begin{gathered}
d^{2}=0 \\
d \Omega^{n} \subset \Omega^{n+1} \\
d(a b)=d(a) b+(-1)^{|a|} a d(b)
\end{gathered}
$$

Model for algebras of differential forms on quantum spaces. Differential calculus over $J=$ differential graded Jordan algebra Ω with $\Omega^{0}=J$.

Derivation-based differential calculus

J unital Jordan algebra with center $Z(J)$

$$
\Omega_{\operatorname{Der}}^{n}(J)=\operatorname{Hom}_{Z(J)}\left(\wedge_{Z(J)}^{n} \operatorname{Der}(J), J\right)
$$

$\Omega_{\text {Der }}(J)=\oplus_{n} \Omega_{\text {Der }}^{n}(J)$ is canonically a differential graded Jordan algebra with

$$
\begin{aligned}
d \omega\left(X_{0}, \cdots, X_{n}\right) & =\sum_{0 \leq k \leq n}(-1)^{k} X_{k} \omega\left(X_{0}, \stackrel{k}{\cdots}, X_{n}\right) \\
& +\sum_{0 \leq r<s \leq n}(-1)^{r+s} \omega\left(\left[X_{r}, X_{s}\right], X_{0}, \stackrel{\stackrel{r}{\cup}}{\stackrel{s}{\vee}}, X_{n}\right)
\end{aligned}
$$

referred to as the derivation-based differential calculus over J.

Universal property for J_{3}^{8} [1], [3]

Theorem (4)

Any homomorphism φ of unital Jordan algebra of J_{3}^{8} into the Jordan subalgebra Ω^{0} of a unital differential graded Jordan algebra $\Omega=\oplus \Omega^{n}$ has a unique extension $\tilde{\varphi}: \Omega_{\operatorname{Der}}\left(J_{3}^{8}\right) \rightarrow \Omega$ as a homomorphism of differential graded Jordan algebras.
$\Omega_{\text {Der }}\left(J_{3}^{8}\right)=J_{3}^{8} \otimes \wedge f_{4}^{*}$ with the Chevalley-Eilenberg differential.

Derivation-based connections I

$J=$ unital Jordan algebra, center $=Z(J), M=$ unital J-module.
A derivation-based connection on M is a linear mapping $X \mapsto \nabla_{X}$ of $\operatorname{Der}(J)$ into $\mathcal{L}(M)$ such that for $x \in J$ and $z \in Z(J)$

$$
\left\{\begin{array}{l}
\nabla_{X}(x m)=X(x) m+x \nabla_{X}(m) \\
\nabla_{z X}(m)=z \nabla_{X}(m)
\end{array}\right.
$$

curvature of ∇

$$
\begin{aligned}
& R_{X, Y}=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]} \\
& \left\{\begin{array}{l}
R_{X, Y}(x m)=x R_{X, Y}(m) \\
R_{Z X, Y}(m)=z R_{X, Y}(m)
\end{array}\right.
\end{aligned}
$$

$\mathfrak{g} \subset \operatorname{Der}(J)$, Lie subalgebra and $Z(J)$-submodule \Rightarrow derivation-based \mathfrak{g}-connection on M (by restriction).

Derivation-based connections II

$\Omega_{\operatorname{Der}}(M)=\operatorname{Hom}_{Z(J)}(\wedge \operatorname{Der}(J), M), \nabla$ linear endomorphism of $\Omega_{\operatorname{Der}}(M)$ such that

$$
\left\{\begin{array}{l}
\nabla\left(\Omega_{\operatorname{Der}}^{n}(M)\right) \subset \Omega_{\operatorname{Der}}^{n+1}(M) \\
\nabla(\omega \Phi)=d(\omega) \Phi+(-1)^{m} \omega \nabla(\Phi)
\end{array}\right.
$$

for any $m, n \in \mathbb{N}, \omega \in \Omega_{\operatorname{Der}}^{m}(J)$ and $\Phi \in \Omega_{\operatorname{Der}}(M)$.
\Rightarrow curvature ∇^{2}

$$
\nabla^{2}(\omega \Phi)=\omega \nabla^{2}(\Phi)
$$

Let ∇ be such a connection and define $\nabla_{X}(m)$ as in I by

$$
\nabla_{X}(m)=\nabla(m)(X)
$$

for $m \in M=\Omega_{\text {Der }}^{0}(M), X \in \operatorname{Der}(J)$
Conversely, ∇ as in $\mathrm{I} \Rightarrow \nabla$ as here with

$$
\begin{aligned}
& \nabla(\Phi)\left(X_{0}, \cdots, X_{n}\right)=\sum_{p=0}^{n}(-1)^{p} \nabla_{X_{p}}\left(\Phi\left(X_{0}, \cdots \stackrel{p}{v} \cdots, X_{n}\right)\right) \\
& +\sum_{0 \leq r<s \leq n}(-1)^{r+s} \Phi\left(\left[X_{r}, X_{s}\right], X_{0}, \cdots \cdots, Y^{Y}, X_{n}\right)
\end{aligned}
$$

General connection

$\Omega=\oplus \Omega^{n}=$ differential graded Jordan algebra, $\Gamma=\oplus \Gamma^{n}$ graded module over Ω.
A connection on Γ, is a linear endomorphism of Γ satisfying

$$
\left\{\begin{array}{l}
\nabla\left(\Gamma^{n}\right) \subset \Gamma^{n+1} \\
\nabla(\omega \Phi)=d(\omega) \Phi+(-1)^{m} \omega \nabla(\Phi)
\end{array}\right.
$$

for $\omega \in \Omega^{n}, \Phi \in \Gamma \Rightarrow$

$$
\nabla^{2}(\omega \Phi)=\omega \nabla^{2}(\Phi)
$$

∇^{2} homogeneous Ω-module homomorphism of degree 2 is the curvature of ∇.

$$
\nabla \nabla^{2}=\nabla^{2} \nabla
$$

is the Bianchi identity of ∇.

Connections on free modules I [3]

J unital Jordan algebra, $M=J \otimes E$ free J-module, Ω differential calculus over J such that Ω is generated by $J=\Omega^{0}$ as differential graded Jordan algebra.
$\nabla: \Omega \otimes E \rightarrow \Omega \otimes E$ connection induced by $\nabla: J \otimes E \rightarrow \Omega^{1} \otimes E$.

Proposition (4)

1. $\stackrel{0}{\nabla}=d \otimes I_{E}: J \otimes E \rightarrow \Omega^{1} \otimes E$ defines a flat connection on M which is gauge invariant whenever the center of J is trivial.
2. Any other Ω-connection ∇ on M is defined by
$\nabla=\stackrel{0}{\nabla}+A: J \otimes E \rightarrow \Omega^{1} \otimes E$ where A is a J-module homomorphism of $J \otimes E$ into $\Omega^{1} \otimes E$.
3. If $\Omega=\Omega_{\text {Der }}$ (i.e. for derivation-based connections) one has
$\left(\nabla^{2}\right)(X, Y)=R_{X, Y}=$
$X A_{Y}-Y A_{X}+\left[A_{X}, A_{Y}\right]-A_{[X, Y]}, \forall X, Y \in \operatorname{Der}(J)$.

Connections on free modules II

Theorem (5)

Let J be a finite-dimensional euclidean Jordan algebra and M be a finite free module i.e. $M=J \otimes \mathbb{R}^{n}$ for $n<\infty$. Then the curvature of a derivation-based connection $\nabla_{X}+A_{X}$ on M is given by $R_{X, Y}=\left[A_{X}, A_{Y}\right]-A_{[X, Y]}$.

Proof.

It follows from Proposition 1 that A_{X} us a $n \times n$ matrix with coefficients in the center $Z(J)$ of J, but $Z(J)$ is a finite-dimensional associative euclidean Jordan algebra on which any derivation vanishes. So one has $Y A_{X}=X A_{Y}=0$. The result follows then from 3 in Proposition 4.

Connections on JSpin-modules I

Any $X \in \operatorname{Der}\left(J_{2}^{n}\right)=\mathfrak{s o}(n+1)$ has an extension as inner derivation of the meson algebra $B_{n+1} \Rightarrow$ an action $m \mapsto X m$ on any
J_{2}^{n}-module $M \Rightarrow$

$$
\stackrel{0}{\nabla} x m=X m, m \in M
$$

defines a derivation-based connection which is flat

$$
\stackrel{0}{R}_{X Y}=[\stackrel{0}{\nabla} x, \stackrel{0}{\nabla} Y]-\stackrel{0}{\nabla}_{[X, Y]} \equiv 0
$$

Any other connection (for $\Omega_{\text {Der }}$) is of the form

$$
\nabla_{x}=\stackrel{0}{\nabla} x+A_{x}
$$

where A_{X} is a J_{2}^{n}-module endormorphism of M which depends linearly of $X \in \mathfrak{s o}(n+1)$.

Connections on JSpin-modules II and further prospects

Since a unital $J S_{\text {pin }}^{n+1}$-module is the same as a untial left B_{n+1}-module and that B_{n+1} is a finite matrix algebra, one can use the noncommutative approach to noncommutative gauge theory developed in the years 1987-1989 which is summarized in reference [6] (see also in [7]).
This is also true for any finite-dimensional euclidean Jordan algebra J since then the universal unital multiplicative envelope $U_{1}(J)$ of J is also a finite-dimensional matrix algebra (i.e. a finite sum of complete matrix algebras). $U_{1}(J)$ is an associative unital algebra characterized by the fact that a unital left $U_{1}(J)$-module is the same thing as a unital J-module, e.g. $B_{n+1}=U_{1}\left(J\right.$ Spin $\left._{n+1}\right)$.

References

[1] M. Dubois-Violette : "Exceptional quantum geometry and particles physics". Nuclear Physics B912 (2016) 426-449. ArXiv: 1604.01247.
[2] I. Todorov, M. Dubois-Violette: "Deducing the symmetry of the Standard Model from the automorphism and structure groups of exceptional Jordan algebra". (IHES/P/17/03), Int. J. Mod. Phys. A33 (2018) 1850118. ArXiv: 1806.09450.
[3] A. Carotenuto, L. Dabrowski, M. Dubois-Violette: "Differential calculus on Jordan algebra and Jordan modules". Lett. Math. Phys. 109 (2019) 113-133. ArXiv:1803.08373.
[4] M. Dubois-Violette, I. Todorov : "Exceptional quantum geometry and particles physics. II". Nuclear Physics B938 (2019) 751-761. ArXiv:1808.08110.
[5] M. Dubois-Violette, I. Todorov: "Superconnection in the spin factor approach to particle physics". Nuclear Physics B957 (2020) 115065. ArXiv:2003.06591 Springer Verlag 1991.
[6] M. Dubois-Violette: "Non-commutative differential geometry, quantum mechanics and gauge theory" in Differential geometric methods in theoretical physics, Rapallo (Italy) 1990, Bartocci, C. and Bruzzo, U. and Cianci, R., Lecture Notes in Physics 375 13-24. Springer Verlag 1991.
[7] M. Dubois-Violette: "Lectures on graded differential algebras and noncommutative geometry" in Noncommutative Differential Geometry and Its Applications to Physics, Shonan, Japan, 1999, Maeda ,Y. and al., Kluwer Academic Publishers 2001, 245-306.

