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General framework

I External geometry: Lorentzian spacetime M
C(M) with Poincaré group action and equivariant
C(M)-modules.

I Internal geometry : Finite quantum geometry
J= finite-dimensional algebra of quantum observables with
some further structure ⇒ G ⊂ Aut(J) and equivariant
J-modules.

I ⇒ J = C(M, J), J -modules and connections
⇒ gauge interactions, etc.
J defines an “almost classical quantum geometry”.

The theory of universal unital multiplicative envelope U1(J) of J
makes the bridge between the present approach and the
noncommutative one which is summarized in [6] and [7].



Internal space for a quark [1]

E ' C3 with (color) SU(3) action

{
SU(3) ⊂ U(3)⇒ E is Hilbert with scalar product 〈•, •〉
Unimodularity of SU(3)⇒ volume = 3-linear form on E , vol(•, •, •)

⇒ antilinear antisymmetric product x on E

vol(Z1,Z2,Z3) = 〈Z1 × Z2,Z3〉

SU(3)-basis = Orthonormal basis (ek) of E such that

v(e1, e2, e3) = 1

By chosing an origin SU(3)-basis ↔ SU(3)
2 products x : E × E → E and 〈, 〉 : E × E → C



Unital SU(3)-algebra

SU(3) = {U ∈ GL(E )|x and 〈, 〉 are preserved}

‖ Z1 × Z2 ‖2=‖ Z1 ‖2‖ Z2 ‖2 −|〈Z1,Z2〉|2

add a unit ⇒ C⊕ E 1l = (1, 0)
(1, 0)(0,Z ) = (0,Z ) = (0,Z )(1, 0), (z1, 0)(z2, 0) = (z1z2, 0)

(0,Z1)(0,Z2) = (α〈Z1,Z2〉, βZ1 × Z2), |α| = |β| = 1
⇒‖ (0,Z1) ‖2‖ (0,Z2) ‖2=‖ (0,Z1)(0,Z2) ‖2

natural to require ‖ (z1,Z1)(z2,Z2) ‖=‖ (z1,Z1) ‖‖ (z2,Z2) ‖
solution :
(z1,Z1)(z2,Z2) = (z1z2 − 〈Z1,Z2〉, z̄1Z2 + z2Z1 + iZ1 × Z2)
⇒ (z̄ ,−Z )(z ,Z ) = (z ,Z )(z̄ ,−Z ) =‖ (z ,Z ) ‖2 1l



An interpretation of the quark-lepton symmetry

SU(3) is the group of complex-linear automorphisms of C⊕ E
which preserves the above product and E carries the fundamental
representation of SU(3) while C corresponds to the trivial one.

⇒ E being the internal space of a quark, it is “natural” to consider
C as the internal space of the corresponding lepton.

As a real algebra C⊕ E is 8-dimensional isomorphic to the
octonion algebra O.
SU(3) ⊂ G2 = Aut(O) is the subgroup preserving i , a given
imaginary element of O with i2 = −1.



The 3 generations

6 flavors of quark-lepton
(u, νe), (d , e), (c , νµ), (s, µ), (t, ντ ), (b, τ)
grouped in 3 generations, columns of

generations

quarks Q = 2/3 u c t
leptons Q = 0 νe νµ ντ

quarks Q = −1/3 d s b
leptons Q = −1 e µ τ

This sort of “triality” combined with the above interpretation of
the quark-lepton symmetry suggest to add over each space-time
point the finite quantum system corresponding to the exceptional
Jordan algebra.



Quantum geometry - I

J (real vector space) quantum analog of a space of real functions.
Squaring x 7→ x2 for x ∈ J such that x .y = 1

2 ((x + y)2 − x2 − y2)
is bilinear.
J is power associative if by defining xn+1 = x .xn

(i) x r .x s = x r+s

J is formally real if one has
(ii)

∑
k∈I (xk)2 = 0⇒ xk = 0, ∀k ∈ I

Theorem (1)

A finite-dimensional commutative real algebra J which is power
associative and formally real is a Jordan algebra, that is one has

x2.(y .x) = (x2.y).x , ∀x , y ∈ J.

Such a Jordan algebra is also called an Euclidean Jordan algebra.



Quantum geometry - II

Condition (i) and (ii) are necessary for spectral theory (with real
spectra).

There are various infinite-dimensional extensions of the above
theorem ⇒ various formulations of “quantum geometry”, etc.

In most cases the Jordan algebras which describe quantum
geometries are hermitian (real) subspaces of complex ∗-algebras
invariant by the anticommutator x .y = 1

2 (xy + xy).

⇒ In these cases one can use the noncommutative geometric
setting.



Properties of finite-dimensional Euclidean Jordan algebras

Let J be a finite-dimensional Euclidean Jordan algebra.
Then J has a unit 1l ∈ J and ∀x ∈ J

x =
∑
r∈Ix

λrer , eres = δrser ∈ J, λr ∈ R

with 1l =
∑

r∈Ix er , card(Ix) ≤ n(J) ∈ N

⇒ functional calculus with R[X ].

Furthermore J is a direct sum of a finite number of simple ideals.



Finite-dimensional simple Euclidean Jordan algebras

Theorem (2)

A finite-dimensional simple Euclidean Jordan algebra is isomorphic
to one of

c = 1 R

c = 2 Jn2 = JSpinn+1 = R1l + Rn+1, γµ.γν = δµν1l, n ≥ 1

c = 3 J1
3 = H3(R), J2

3 = H3(C), J4
3 = H3(H), J8

3 = H3(O)

c = n ≥ 4 J1
n = Hn(R), J2

n = Hn(C), J4
n = Hn(H)

These correspond to the “finite quantum spaces” (i.e. “real
function’s spaces” over the “quantum spaces”).



The “octonionic factors” J8
2 and J8

3 [1], [4]

The above interpretation which connects the quark-lepton
symmetry and the unimodularity of the color group points the
attention to the factors

J8
2 = H2(O) = JSpin9

J8
3 = H3(O)

together with the subgroups of Aut(J8
2 ) = O(9) and of

Aut(J8
3 ) = F4 which preserve the splitting O = C⊕ C3 (and act

C-linearly on C3).
Remark : It is worth noticing here that there is another octonionic
factor namely J7

2 = JSpin8 identified to the Jordan subalgebra of
J8

2 which consists of the 2× 2 octonionic hermitian matrices with

diagonals multiple of 1l (i.e.

(
λ x
x̄ λ

)
with λ ∈ R, x ∈ O).



Action of GSM = SU(3)× SU(2)× U(1)/Z6 on J8
2

O(9) = Aut(J8
2 ), the subgroup which preserves the splitting

O = C⊕C3 is the group O(3)⊗U(3). To express this action write(
ζ1 x
x̄ ζ2

)
∈ J8

2

as (
ζ1 x
x̄ ζ2

)
=

(
ζ1 z
z̄ ζ2

)
+ Z ∈ J2

2 ⊕ C3

where x = z + Z ∈ C ⊕ C3 represents x ∈ O. The action of
O(3)⊗ U(3) is then the action of O(3) = Aut(J2

2 ) and the action
of U(3) on C3. The action of the connected part SO(3)× U(3) is
in fact an action of GSM/Z2 = SO(3)× U(3), i.e. of GSM by
forgetting the torsion part of the fundamental group.



Action of SU(3)× SU(3)/Z3 on J8
3

F4 = Aut(J8
3 ), the subgroup which preserves the representations of

the octonions occurring in the matrix elements of J8
3 as elements

of C⊕ C3 is SU(3)× SU(3)/Z3. To express this action writeζ1 x3 x̄2

x̄3 ζ2 x1

x2 x̄1 ζ3

 ∈ J8
3

as ζ1 z3 z̄2

z̄3 ζ2 z1

z2 z̄1 ζ3

+ (Z1,Z2,Z3) ∈ J2
3 ⊕M3(C)

where xi = zi + Zi ∈ C⊕ C3 is the representation of xi ∈ O.

The action of (U,V ) ∈ SU(3)× SU(3) is then
H 7→ VHV ∗, M 7→ UMV ∗ on H ⊕M ∈ J2

3 ⊕M3(C).

The action of U is the previous action of the color SU(3).



The Z3-splitting principle

Yokota suggests a simpler formulation (Arxiv: 0909.0431),
i ∈ C corresponds to i ∈ O⇒ Z3 ⊂ SU(3) ⊂ G2 = Aut(O). The
Z3 action on O is induced by w ∈ Aut(O)

w(z + Z ) = z + ω1Z , ω1 = −1

2
+

√
3

2
i

One has w3 = I and this also induces a Z3-action by
automorphism, again denoted w , on J8

2 (then w ∈ SO(9)) and on
J8

3 (then w ∈ F4). The corresponding subgroups leaving w
invariant are given by

(G2)w = SU(3)

(SO(9))w = GSM/Z2

(F4)w = SU(3)× SU(3)/Z3



Exceptional quantum factor

J8
3 = H3(O) = {3× 3 hermitian octonionic matrices}

I Albert has shown that it cannot be realized as a part stable
for the anticommutator of an associative algebra.

I It follows from the theory of Zelmanov that this is the only
exceptional factor.



Center
A arbitrary K-algebra; the center Z (A) of A is the set of the z ∈ A
such that

[x , z ] = 0, ∀x ∈ A

and
[x , y , z ] = [x , z , y ] = [z , x , y ] = 0, ∀x , y ∈ A

where [x , z ] = xz − zx , [x , y , z ] = (xy)z − x(yz), ∀x , y , z ∈ A.
Z (A) is a commutative associative subalgebra of A.

Lemma (1)

Assume that A is commutative. Then one has :
z ∈ Z (A)⇔ [x , y , z ] = 0, ∀x , y ∈ A.

Proof.

[x , z ] = 0 is clear ; [x , y , z ] = −[z , y , x ] = 0 by commutativity and
again by commutativity [x , y , z ]− [y , x , z ] = 0 implies [x , z , y ] = 0.
(≡ [y , z , x ] ≡ −[x , z , y ]).



Derivations
A arbitrary K-algebra ; a linear endomorphism δ of A is a
derivation of A (into A) if it satisfies

δ(xy) = δ(x)y + xδ(y), ∀x , y ∈ A

The space Der(A) of all derivations of A is a Z (A)-module

(zδ)(x) = zδ(x), ∀z ∈ Z (A), ∀x ∈ A

Der(A) is also a Lie algebra

[δ1, δ2](x) = δ1(δ2(x))− δ2(δ1(x)),∀δ1, δ2 ∈ Der(A), ∀x ∈ A

One has
δ(Z (A)) ⊂ Z (A), ∀δ ∈ Der(A)

and

[δ1, zδ2] = z [δ1, δ2] + δ1(z)δ2, ∀δ1, δ2 ∈ Der(A), ∀z ∈ Z (A)

that is (Der(A),Z (A)) is a Lie Rinehart algebra



Categories of algebras

K a fixed field ; all vector spaces, algebras are over K
A category of algebras is a category C such that its objects are
algebras and its morphisms are algebra-homomorphisms.
CAlg = category of all algebras and all algebra-homomorphisms
CAlg1

= category of unital algebras and unital
algebra-homomorphisms
CLie = category of Lie algebras
CJord = category of Jordan algebras
CJord1 = category of unital Jordan algebras
CA = category of associative algebras
CA1 = category of unital associative algebras
CAZ

= category of all associative algebras but morphisms sending
centers into centers.
CCom = category of commutative algebras, etc.



Bimodules

C a category of algebras
A ∈ C an object, M a vector space such that there are

A⊗M → M, a⊗m 7→ am and M ⊗ A→ M,m ⊗ a 7→ ma

define the product (A⊕M)⊗ (A⊕M)→ A⊕M

(a⊕m)⊗ (a′ ⊕m′) 7→ aa′ ⊕ (am′ + ma′)

M is an A-bimodule for C if

1. A⊕M ∈ C
2. A→ A⊕M is a morphism of C
3. A⊕M → A is a morphism of C

Examples : Bimodules for the above categories (exercise !)



Jordan (bi)-modules I

J Jordan algebra, M vector space with

J ⊗M → M, x ⊗ Φ 7→ xΦ
M ⊗ J → M, Φ⊗ x 7→ Φx

such that the null-split extension J ⊕M

(x ⊕ Φ)(x ′ ⊕ Φ′) = (xx ′ ⊕ xΦ′ + Φx ′)

is again a Jordan algebra then M is a Jordan bimodule

⇔


(i) xΦ = Φx
(ii) x(x2Φ) = x2(xΦ)
(iii) (x2y)Φ− x2(yΦ) = 2((xy)(xΦ)− x(y(xΦ)))

If J has a unit 1l ∈ J, M is unital if
(iiii) 1lΦ = Φ

In view of (i), a Jordan bimodule is simply called a Jordan module.



Jordan (bi)-modules II

J,M being as before, set LxΦ = xΦ then (ii) reads

(ii)′ [Lx , Lx2 ] = 0

while (iii) reads

(iii)′ Lx2y − Lx2Ly − 2LxyLx + 2LxLyLx = 0

which is equivalent to{
(a) Lx3 − 3Lx2Lx + 2L3

x = 0
(b) [[Lx , Ly ], Lz ] + L[x ,z,y ] = 0

where [x , z , y ] = (xz)y − x(zy) is the associator. Condition (iiii)
reads

(iv)′ L1l = 1l(= IM)



Free J-modules and free Z (J)-modules I [3]

J a Jordan algebra is canonically a J-module which is unital
whenever J has a unit.

Lemma (2)

Let J be a Jordan algebra, E and F be vector spaces and let
ϕ : J ⊗ E → J ⊗ F be a J-module homomorphism. Then one has

ϕ(Z (J)⊗ E ) ⊂ Z (J)⊗ F

Proof.

Choose basis (eα) and (fλ) for E and F . One has
ϕ(z ⊗ eα) = mλ

α⊗ fλ for z ∈ Z (J) and some mλ
α ∈ J. On the other

hand one has (xy)z = x(yz) for any x , y ∈ J
⇒ ϕ((xy)z ⊗ eα) = (xy)ϕ(z ⊗ eα) = xϕ(yz ⊗ eα) = x(yϕ(z ⊗ eα))
⇔ [x , y ,mλ

α] = 0.



Free J-modules and free Z (J)-modules II

Proposition (1)

Let J be a unital Jordan algebra. Then J ⊗ E 7→ Z (J)⊗ E and
(ϕ : J ⊗ E → J ⊗ F ) 7→ (ϕ � Z (J)⊗ E : Z (J)⊗ E → Z (J)⊗ F ) is
an isomorphism between the category of free unital J-modules and
the category of free unital Z (J)-modules.

Indeed from the above lemma ϕ � (Z (J)⊗ E ) is a Z (J)-module
homomorphism of Z (J)⊗ E into Z (J)⊗ F .
Conversely any Z (J)-module homomorphim
ϕ0 : Z (J)⊗ E → Z (J)⊗ F extends uniquely by setting
xϕ0(1l⊗ E ) = ϕ(x ⊗ E ) ∈ J ⊗ F as a J-module homomorphism.



Unital JSpin-modules I
E , (•, •) pseudo euclidean → 3 unital R-algebras generated by E

1. Jordan spin factor JSpin(E ) = R1l + E x ◦ y = (x , y)1l
2. Clifford algebra C`(E ) xy + yx = 2(x , y)1l(= 2x ◦ y)
3. Meson algebra B(E ) xyx = (x , y)x (B(E ) associative).

C`(E ) and B(E ) are finite-dimensional unital Z2-graded
associative real algebras and x 7→ 1

2 (x ⊗ 1l + 1l⊗ x) defines an
injective homomorphism i : B(E )→ C`(E )⊗ C`(E )

Theorem (3)

a - C`(E ) is the universal unital associative envelope of JSpin(E )
b - B(E ) is the universal unital multiplicative envelope of JSpin(E )
i.e. M unital left B(E )-module ⇔ M unital JSpin(E )-module.

Proof.

Let M be a unital JSpin(E )-module. Then Lx◦y = (x , y)1l so (ii)’
is satisfied in view of (iv)’ and (iii)’ while (iii)’ reduces to
LxLyLx = (x , y)Lx which means that M is a unital left
B(E )-module.



Unital JSpin-modules II

O(E ) = Aut(JSpin(E )) = Aut(C`(E )) = Aut(B(E )),
so(E ) = Der(JSpin(E )) = Der(C`(E )) = Der(B(E ))
moreover the corresponding derivations are inner derivations in the
above corresponding algebras ⇒ they act on the modules for these
algebras.
JSpin(E ) is an euclidean Jordan algebra iff. E is euclidean, in this
case, one identifiess E with Rn (n = dim(E )) endowed with the
scalar product for which the canonical basis is orthonormal and use
the notations JSpin(E ) = JSpinn,C`(E ) = C`n,B(E ) = Bn,
O(E ) = On and so(E ) = son.

Bn is the direct sum of a finite family of matrix algebras.



Clifford algebras as JSpin-modules

C`n+1 is a unital module over Jn2 = JSpinn+1 via

Lγ(A) =
1

2
(γA + Aγ)

Canonical isomorphism of Z2-graded vector space (PBW)

Γ : ∧Rn+1 → C`n+1, ωi1 . . .ip 7→ Γ(ω) = ωi1 . . .ip γ
i1 . . . γ ip

⇒ C`n+1 = ⊕n+1
p=0Γp with Γp = Γ(∧pRn+1)

Proposition (2)

For any integer p ≤ 1
2n, Γ2p ⊕ Γ2p+1 is an irreducible

Jn2 -submodule of C`n+1 and if n + 1 = 2m then Γ2m ' R is also an
irreducible submodule of C`n+1 = C`2m.

The decomposition of C`n+1 into irreducible Jn2 -modules follows.



The case of J4k
2 = JSpin4k+1 for k ≥ 1

ε̂ = γ0γ1 . . . γ4k ∈ C`4k+1 is central with (ε̂)2 = 1l

⇒ C`4k+1 = C`+
4k ⊕ C`−4k , C`ε4k ' C`4k .

Setting γε0 = εγε1 . . . γ
ε
4k ∈ C`ε4k and

Lγm(ωε) = 1
2 (γεmω

ε + ωεγεm), ∀ωε ∈ C`ε4k ,m ∈ {0, 1, . . . , 4k}

⇒ C`ε4k ∈ {J4k
2 -modules} ⇒ a J4k

2 -module structure on

C`4k+1which is different of the one induced by the Jn2 -module

structure of C`n+1 defined previously ∀n .



J8
3 -modules

Any Jordan algebra J is canonically a J-module which is unital
whenever J has a unit.

The list of the unital irreducible Jordan modules over the
finite-dimensional Euclidean Jordan algebras is given in [Jacobson].
In the case of the exceptional algebra one has the following
proposition

Proposition (3)

Any unital irreducible J8
3 -module is isomorphic to J8

3 (as module).

In particular, any finite unital module over J8
3 is of the form J8

3 ⊗ E
for some finite-dimensional real vector space E . Thus the
complexified J8

3 ⊗ C of J8
3 is a free J8

3 -module.



J8
3 -modules for 2 families by generation [1]

Ju =

 α1 ντ + t ν̄µ − c
ν̄τ − t α2 νe + u
νµ + c ν̄e − u α3


Jd =

 β1 τ + b µ̄− s
τ̄ − b β2 e + d
µ+ s ē − d β3


or with the previous representation

Ju =

 α1 ντ ν̄µ
ν̄τ α2 νe
νµ ν̄e α3

+ (u, c , t)

Jd =

 β1 τ µ̄
τ̄ β2 e
µ ē β3

+ (d , s, b)

αi , βj new Majorana particles ⇒ OK for the cancellation of
anomalies !



Quaternions and the U(1)× SU(2)-symmetry

q = (z1, z2) = z1 + z2j ∈ H

The subgroup of Aut(H) which preserves i is U(1)

z1 + z2j 7→ z1 + e iθz2j(
ξ1 q
q̄ ξ2

)
=

(
ξ1 z1

z̄1 ξ2

)
+ z2

(
0 j
−j 0

)
∈ J4

2

Subgroup of Aut(J4
2 ) which preserves · · · = U(1)× SU(2)(

ξ1 z1

z̄1 ξ2

)
+z2

(
0 j
−j 0

)
7→ U

(
ξ1 z1

z̄1 ξ2

)
U∗+e iθz2

(
0 j
−j 0

)
as for U ∈ SU(2)

U

(
0 j
−j 0

)
U∗ =

(
0 j
−j 0

)



Triality in J8
3 and the 3 generations [4]

Two ways to describe the underlying triality of J8
3 :

W1 - this triality corresponds to the 3 octonions of the matrix of
an element of J8

3 ,

W2 - this triality corresponds to the 3 canonical subalgebras of
hermitian 2× 2 matrices of J8

3 corresponding themselves to the 3
octonions of W1.

W1 and W2 are equivalent but lead naturally to 2 conceptually
different interpretations. In fact J8

2 = JSpin9 corresponds to a
complete generation.



J8
2 = JSpin9 for one generation

1. Aut(J8
2 ) = O(9)

GSM/Z2 = SO(3)×U(3) is (') the subgroup of SO(9) which
preserves the splitting C⊕C3 of O and acts C-linearly on C3.

2. The ∗-algebra C`c9 = M16(C)⊕M16(C) is generated by the
relations 

1
2 (xy + yx) = x ◦ y , ∀x , y ∈ J8

2

x∗ = x , ∀x ∈ J8
2

1l = 1lJ8
2

3. J8
2 is a unital Jordan subalgebra of the hermitian part
H(C`c9) = J2

16 ⊕ J2
16 of C`c9 which is therefore a J8

2 -module.
Note that the diagonal ∆H(C`c9) of H(C`c9) is a maximal
subspace of compatible observables in H(C`c9) is of
dimension 32 = 25. This property is common to H(C`9)
H(C`10) and H(C`c10), i.e.
dim(∆H(C`9)) = dim(∆H(C`10)) = dim(∆H(C`c10)) = 25.



The correspondence “triality-generation” in J8
3 [4]

P2 = P, primitive= pure state of J8
3

↔ J8
2 (P) = (1l− P)J8

3 (1l− P) ' JSpin9

Aut(J8
2 (P))= subgroup of F4 which preserves P ' Spin9

Pi diagonal ↔ J8
2 (Pi )↔ generation i (i ∈ {1, 2, 3})

Aut(J8
2 (Pi )) ∩ SU(3)c × SU(3)

Z3
= Gi '

SU(3)c × SU(2)× U(1)

Z6

Each J8
2 (Pi ) with the identification O = C⊕C3 has automorphism

group Gi ⊂ F4 isomorphic to the standard model group for one
generation



The extended electroweak symmetry SU(3)ew

Ji = J8
2 (Pi ), Aut(Ji ) ' Spin9

SU(3)c × SU(3)/Z3 ⊂ F4 = Aut(J8
3 )

Aut(Ji ) ⊂ F4

SU(3)c × SU(3)/Z3 ∩ Aut(Ji ) = Gi

Gi ' SU(3)c × SU(2)× U(1)/Z6

⇒ The second SU(3) project onto the electroweak symmetry for
each generation .
This SU(3) will be called extented electroweak symmetry and
denoted by SU(3)ew .
Internal symmetry SU(3)c × SU(3)ew/Z3 ⊂ F4



Differential graded Jordan algebras [1]

Ω = ⊕n∈NΩn which is a Jordan superalgebra (for N/2N)

ab = (−1)|a‖b|ba for a ∈ Ω|a|, b ∈ Ω|b|

and graded Jordan identity

(−1)|a‖c|[Lab, Lc ]gr + (−1)|b‖a|[Lbc , La]gr + (−1)|c‖b|[Lca, Lb]gr = 0

with a differential d
d2 = 0

dΩn ⊂ Ωn+1

d(ab) = d(a)b + (−1)|a|ad(b)

Model for algebras of differential forms on quantum spaces.
Differential calculus over J = differential graded Jordan algebra Ω
with Ω0 = J.



Derivation-based differential calculus

J unital Jordan algebra with center Z (J)

Ωn
Der(J) = HomZ(J)(∧nZ(J)Der(J), J)

ΩDer(J) = ⊕nΩn
Der(J) is canonically a differential graded Jordan

algebra with

dω(X0, · · · ,Xn) =
∑

0≤k≤n(−1)kXk ω(X0,
k
∨· · ·,Xn)

+
∑

0≤r<s≤n(−1)r+s ω([Xr ,Xs ],X0,
r
∨· · ·

s
∨· · ·,Xn)

referred to as the derivation-based differential calculus over J.



Universal property for J8
3 [1], [3]

Theorem (4)

Any homomorphism ϕ of unital Jordan algebra of J8
3 into the

Jordan subalgebra Ω0 of a unital differential graded Jordan algebra
Ω = ⊕Ωn has a unique extension ϕ̃ : ΩDer(J

8
3 )→ Ω as a

homomorphism of differential graded Jordan algebras.

ΩDer(J
8
3 ) = J8

3 ⊗ ∧f∗4 with the Chevalley-Eilenberg differential.



Derivation-based connections I

J= unital Jordan algebra, center=Z (J), M= unital J-module.
A derivation-based connection on M is a linear mapping X 7→ ∇X

of Der(J) into L(M) such that for x ∈ J and z ∈ Z (J)
∇X (xm) = X (x)m + x∇X (m)

∇zX (m) = z∇X (m)

curvature of ∇
RX ,Y = [∇X ,∇Y ]−∇[X ,Y ]

RX ,Y (xm) = xRX ,Y (m)

RzX ,Y (m) = zRX ,Y (m)

g ⊂ Der(J), Lie subalgebra and Z (J)-submodule
⇒ derivation-based g-connection on M (by restriction).



Derivation-based connections II
ΩDer(M) = HomZ(J)(∧Der(J),M), ∇ linear endomorphism of
ΩDer(M) such that

∇(Ωn
Der(M)) ⊂ Ωn+1

Der (M)

∇(ωΦ) = d(ω)Φ + (−1)mω∇(Φ)

for any m, n ∈ N, ω ∈ Ωm
Der(J) and Φ ∈ ΩDer(M).

⇒ curvature ∇2

∇2(ωΦ) = ω∇2(Φ)

Let ∇ be such a connection and define ∇X (m) as in I by

∇X (m) = ∇(m)(X )

for m ∈ M = Ω0
Der(M), X ∈ Der(J)

Conversely, ∇ as in I ⇒ ∇ as here with

∇(Φ)(X0, · · · ,Xn) =
∑n

p=0(−1)p∇Xp(Φ(X0,
p
∨· · · · · ·,Xn))

+
∑

0≤r<s≤n(−1)r+s Φ([Xr ,Xs ],X0,
r
∨· · ·

s
∨· · ·,Xn)



General connection

Ω = ⊕Ωn = differential graded Jordan algebra, Γ = ⊕Γn graded
module over Ω.
A connection on Γ, is a linear endomorphism of Γ satisfying{

∇(Γn) ⊂ Γn+1

∇(ωΦ) = d(ω)Φ + (−1)mω∇(Φ)

for ω ∈ Ωn, Φ ∈ Γ ⇒

∇2(ωΦ) = ω∇2(Φ)

∇2 homogeneous Ω-module homomorphism of degree 2 is the
curvature of ∇.

∇∇2 = ∇2∇

is the Bianchi identity of ∇.



Connections on free modules I [3]

J unital Jordan algebra, M = J ⊗ E free J-module, Ω differential
calculus over J such that Ω is generated by J = Ω0 as differential
graded Jordan algebra.
∇ : Ω⊗ E → Ω⊗ E connection induced by ∇ : J ⊗ E → Ω1 ⊗ E .

Proposition (4)

1.
0
∇= d ⊗ IE : J ⊗ E → Ω1 ⊗ E defines a flat connection on M
which is gauge invariant whenever the center of J is trivial.

2. Any other Ω-connection ∇ on M is defined by

∇ =
0
∇ +A : J ⊗ E → Ω1 ⊗ E where A is a J-module

homomorphism of J ⊗ E into Ω1 ⊗ E .

3. If Ω = ΩDer (i.e. for derivation-based connections) one has
(∇2)(X ,Y ) = RX ,Y =
XAY − YAX + [AX ,AY ]− A[X ,Y ], ∀X ,Y ∈ Der(J).



Connections on free modules II

Theorem (5)

Let J be a finite-dimensional euclidean Jordan algebra and M be a
finite free module i.e. M = J ⊗ Rn for n <∞. Then the curvature
of a derivation-based connection ∇X + AX on M is given by
RX ,Y = [AX ,AY ]− A[X ,Y ].

Proof.

It follows from Proposition 1 that AX us a n × n matrix with
coefficients in the center Z (J) of J, but Z (J) is a
finite-dimensional associative euclidean Jordan algebra on which
any derivation vanishes. So one has YAX = XAY = 0. The result
follows then from 3 in Proposition 4.



Connections on JSpin-modules I

Any X ∈ Der(Jn2 ) = so(n + 1) has an extension as inner derivation
of the meson algebra Bn+1 ⇒ an action m 7→ Xm on any
Jn2 -module M ⇒

0
∇X m = Xm,m ∈ M

defines a derivation-based connection which is flat

0
RXY = [

0
∇X ,

0
∇Y ]−

0
∇[X ,Y ]≡ 0

Any other connection (for ΩDer) is of the form

∇X =
0
∇X +AX

where AX is a Jn2 -module endormorphism of M which depends
linearly of X ∈ so(n + 1).



Connections on JSpin-modules II and further prospects

Since a unital JSpinn+1-module is the same as a untial left
Bn+1-module and that Bn+1 is a finite matrix algebra, one can use
the noncommutative approach to noncommutative gauge theory
developed in the years 1987-1989 which is summarized in reference
[6] (see also in [7]).
This is also true for any finite-dimensional euclidean Jordan algebra
J since then the universal unital multiplicative envelope U1(J) of J
is also a finite-dimensional matrix algebra (i.e. a finite sum of
complete matrix algebras). U1(J) is an associative unital algebra
characterized by the fact that a unital left U1(J)-module is the
same thing as a unital J-module, e.g. Bn+1 = U1(JSpinn+1).
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